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Abstract. This paper deals with the problem of twisting of a non-homogeneous, isotropic, half-space by rotating a
circular part of its boundary surface (0 r a, z = 0) through a given angle. A ring (a < r < b, z = 0) outside this
circle is stress-free and the remaining part (r > b, z = 0) is rigidly clamped. The shear modulus Ij is assumed to vary
with the cylindrical coordinates r, z by the power law ( = ,razO). Such a dependence is of practical interest in
the context of Soil Mechanics. The problem leads to a Fredholm integral equation of the second kind which is
solved numerically, giving an evaluation of the influence of non-homogeneity on the torque at the surface and the
stress intensity factor. The homogeneous case studied in [16] is recovered. Expressions for some quantities of
physical importance such as the torque applied at the surface and stress intensity factor are obtained. It appears
from our investigation that the influence of clamping dies out with increasing a and P/. Quantitative evaluations are
given and some curves for the relative increase, due to clamping, in the torque and in the stress intensity factor are
presented.

1. Introduction

The standard Reissner-Sagoci problem [1]-[5] is that of determining the components of
stress and displacement in the interior of the semi-infinite homogeneous isotropic solid
(z > 0), when a circular area (0 - r - a) of its boundary surface (z = 0) is forced to rotate
through an angle, y, about the z-axis. It is assumed that the part of the boundary surface
which lies outside this circle is stress-free. This problem for a non-homogeneous half-space
or large thick plate, which is of some practical importance, was considered by several authors

[6]-[15].
Recently, Singh et al. [16] considered the Reissner-Sagoci problem for a homogeneous

half-space with a surface constraint that the ring (a < r < b, z = 0) is stress free and the
remainder part (r > b, z = 0) is rigidly clamped.

This paper is to consider the constrained problem for a non-homogeneous isotropic
half-space with shear modulus in the form /xr z , where a >-2, 03 <1 and / -
constant. This kind of dependence occurs in some soil materials.

The problem leads to a system of triple integral equations which is further reduced to a
single integral equation of Fredholm type of the second kind for an auxiliary function.

This Fredholm integral equation for the general values of the parameters a, /3 and = alb
may be solved numerically. Moreover one can obtain an iterative solution in the form of a
convergent power series in the ratio E.

Expressions for some quantities of physical importance such as the torque applied at the
surface and stress intensity factor at the rim (z = 0, r = a - 0) are given in terms of the
auxiliary function.

Some curves are presented for the relative increase in the torque and in the stress intensity
factor due to clamping against the ratio for different values a and /3.
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It appears from our investigations that the influence of clamping dies out with increasing a
and 3. This may be clearly remarked on the figures.

2. Formulation of the problem

We consider the torsion of a non-homogeneous, semi-infinite solid (z _ 0) by rotating the
circular area (O - r - a) of its bounding surface (z = 0) through an angle y about the z-axis.
The part (z = 0, b < r < 0) is assumed to be rigidly clamped. The remaining part (a < r < b)
of this surface is stress free (Fig. 1). Moreover, it is assumed that the solid is clamped at
infinity.

We take the shear modulus of the solid in the form:

A = J,,,r z (1)

where a > -2, 0 13 < 1, Hao-constant.

For the axisymmetrical torsion problems, the only non vanishing displacement is the
circumferential one, u. The non vanishing stress components Te, roz are related to uo
through the relations:

a
Ter = Arr (Uer) ; Toz = / a (U ) .

The only nontrivially satisfied equilibrium equation is:

aor + aTz 2
ar + a +

(2)

(3)

Substituting (2) into (3) and taking (1) in account, we obtain the following partial
differential equation for determining the displacement component u:

a2u0 (1 + a U) o (1 + ) 13 au a2U 0

ar2 r ar r2 o z z 2

Ue = r

U = 0 ez = C; r

Fig. 1. Formulation of the problem.

(4)

<-b &a

b-

A = Al ra z
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The boundary conditions of the problem are:

uo(r, )=yr, (O r a), (5)

TZ,,(r,0)=O0, (a < r < b), (6)

u,(r, ) = 0, (r b) . (7)

Also,

U, %T4 and T -- 0 as r2 + Z2-. (8)

3. Reduction to an integral equation

The solution of equation (4) which satisfies condition (8) takes the form:

u,(r, z) = rl-Vz f" APA(A)J,(Ar)Kp(Az) dA, (9)

where p = (1 - 3)/2, v = 1 + (a/2), J(x) denotes the Bessel function of the first kind, Kp(x)
is the modified Bessel function of the second kind and A(A) is an unknown function to be
found.

The stress components corresponding to this displacement may be obtained by substituting
(9) into (2) to get

T67 (r, z) = - z.r- 'zP fo A'+PA(A)J,(Ar)Kp-l(Az) dA, (10)

TOr(r, z) = -A.lr zP - A+PA(A)Jv+i(Ar)Kp(Az) d. (11)

The boundary conditions (5)-(7) reduce to the following system of triple integral
equations:

for ( 2
1 - p

A(A)J,(Ar)dA= 2(P) yrV, (Orma), (12)

A2PA(A)J(Ar) dA = 0, (a<r<b), (13)

JoA(A)JV(Ar) dA = O, (b r <). (14)

These may be solved by assuming [16]

A2pA(A)J,(Ar) dA = f 2 (r), (b r <a). (15)
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By the Hankel inversion theorem, equations (13) and (15) give

A2P 1A(A) = f xfl(x)Jv(Ax ) dx + Xf 2 (x)J(Ax) dx . (16)

Substituting the value A(A) from (16) into equations (12) and (14), we get

21 yr~, (0-~r--a)(17)xf (x)L(x, r) dx + xf2 (x)L(x, r) dx = {(p) (17)
0, (b -r <oo),

where

L(x, r) = jf A 2 J(Ax)J,(Ar) dA. (18)

Making use of the result in Appendix, write

22-2p min(x,r) S1
+2v -2p

L(x, r) F= ( {p),2 (xr)-' Lo (x 2
_ s2 )1 -P(r2 _ S2)1-P ds

or (19)

2 2 2p 
1
-

2
v 

2
p

- f(p2 )}2'x'J max(x,r) (2 -_ x
2
)

1
-P(s

2
-r 2) - p

Substituting (19) into (17) and interchanging the order of integration, one obtains

s1 +2v-2p F (s) 2p (p) r2 2 s 1-2-2pF2 (s)
( 2 s2)1ds = 2P F(p)yr -_ 2lJ 2 p ds, (0 < r < a), (20)

s1-2v-2pF2(s ) d s fa 1+2v 2PF (S)
s 2 _r 2)1-p ds= -r ( 2_ -2() ds, (b r <c ). (21)
where2 -

where

F(S)=fax (x)
Fl ( s) = (X2 S2)1 P dx,

F2(s) = f; (s 2 _ 2fx( ) dx. (

(22)

Regarding the right-hand sides of equations (20) and (21) as known functions of r, these
equations are of an Abel type. Hence their solutions are

s$F,(s) = 2r(1 + v) { 21P-F(p)ys'
F(p)F(1 + v -p) 2(

- A,- lA(s/A). -vF()2FI,(1-p , 1 + v; 1 + v-p; (s/A,)2 )d, I, (O s (a),

(23)
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s -F 2(s) =F(p)-( v ) (f A- (A/s) 2+v-2pA F1 (A)
F(p)r(l + v - p) O

x 2Fl(1-p, +v; l +v-p; (As) 2) )dA ) , (b <s < ), (24)

where 2F denotes the hypergeometric function.
In obtaining (23) and (24), we have made use of the following integrals:

d f r1+2 Fr(1+ v)r(1-p) +2-2p 

ds J (s_ r2 )P dr r( + V -p)

d d r +2d rF(1 + v)r(1 -p)A 2p 2 1+
2 v-2p

ds o (S2 _ r2 )P(A 2 - r2 )- p r( + v -p) J 

x 2F,(1 -p, 1 + v; 1 + v -p; (s/A) 2), (A>s) (26)

d f r1-2 dr r(l + v)F(1 - p)s 2

ds , (r2 - s2)P(r2- A2)'-pdr r(1 +v-p) J

x 2Fl(1-p, 1 + v; 1 + v-p; (Als) 2 ), (A< s). (27)

In order to reduce equations (23) and (24) to a convenient form, set

F(1 + v-p) y (28)SFI(S) = 2P r( + v) -p) a(V-P+1/2)sP-12K (S)

A peF2(A)=2P chang ) f variab^ples = a, A = A) b in equation (23) and = A in(28)F(1 + v)

and perform a change of variables s = au, A = bu, in equation (23) and s = bu, A = aw, in
equation (24), as a consequence of which these equations assume the form

K (au) = U-P+1/2 2F(1 + ) E(-p+1/2) l(U/ + K2(bv)
r(p)r( v +p)

x 2F(1 -p, 1 + v; 1 + v -p; (/V) 2 2 ) d , (0 < U < 1), (29)

K2(bo) _= - 2r( + ) e(,-p+3/2) o' w -P+3
K2(bv) = r(p)rOw + v -p)'(wv)v- 31 2K(aw)

x 2F,(1 -p, 1 + v; 1 + v -p; (w/V)2e 2) dw, (1 < v < OC), (30)

where e = alb.
Substituting for K2(bu) from (30) into (29), the following Fredholm integral equation of

the second kind is obtained for K,(au):

K(au) =u-1p+ll2 + K(u,A)K,(aA)dA, (<u<l), (31)f0
with the symmetric kernel
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K(u,A)=£2(+-p)(Au)-p+1/2[ A=2F(1 + 2 +v) 12 -21[r(p)r(1 + V-p) JwO

x 2F(1 -p, 1+ v; 1+ v; 1 + V -p; A2w2 e2) dw.

(32)

4. Expressions for some physical quantities

The shear component Tz, inside the circle (z = 0, 0 ~ r ~ a) is found to be

%-z(r, 0) = -tx,2-PF(l - p)r-lf(r) , (0 - r a) . (33)

From equation (22), which is of Abel type, we get

f 1(r) = Fp)2(1 _p r 1d fa F(S) ds, (34)r(p)r(1-p) dr rr (s2 - r2)p'

ro (r, 0) = , 2 _ r2() d a sF,(s) d
F(P) dr Jrr (s2_r2)P

The torque T required to produce the rotation is:

T = -2rr r2rTo(r, 0) dr. (36)

Substituting (35) into (36), one obtains

T 3 2,.1,+ir( Ir lp) r) [(l + v)p)] Jo U-P+
1
/

2
Kl(a) du. (37)

The second quantity most interesting for applications is the stress intensity factor

K, = lim [a - r]P,,oz(r, 0),
r a -0

which may be derived from (35) and (28). It is connected with the main auxiliary function K1

by the relation

2'-PF(1 + v)
K, = -',p r(p)r(1 + v -_) ya2v-p-Kl(a) . (38)

It is important to note that, if the ratio (e = alb) tends to zero (i.e. b tends to infinity), the
kernel K(u, t) tends to zero, and we recover the exact solution

K(au) Uv - p + l 2 (39)

This limiting case corresponds to the unconstrained Reissner-Sagoci problem for a
non-homogeneous half-space studied by Singh [10]. If we denote the torque and the stress
intensity factor in this case by T' and Kt respectively, then
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2(l+v-p) 2TF(1 -p) F(1+ v) 2
TX = ,a2 (1 + v-p)F(p) T7 + v -p) (40)

21-pr(1 + ) 2v - p -
1

K' =-_ r(p)F(1 + v -p) ya (41)

Using equations (37), (38), (40) and (41), we get the relative increase in the torque Tp
and in the stress intensity factor K due to clamping:

Tp = T 2(1 + v -p) uv +K(au) du-1 , (42)

K, - KtKP t K [Kl(a) - 1]. (43)

The third quantity is the displacement component u,(r, 0) in the ring (z = 0, a < r < b). Its
expression in terms of the two functions K, K2 is found to be

2r( + v)ya_-p _ 12 1-2 (a sP 1 Ki( S)
u0(r, 0) = r - '

F(p)F(1 + v -p) ' (r2 _ 2)1-p

+ r 2v s 2 r2)1pK2(S) ds, (a<r<b). (44)

For the unconstrained case (b- m), this component takes the form:

u (r, 0) = F(1 + y - p(45)F(p)F(1 + p (a - p) a, )

where B(X)(m, n) is the incomplete beta function. For v = 1 (i.e. a = 0), form (45) agrees
with the result of Kassir [8].

5. Solution of the integral equation (31)

Equation (31) may be solved numerically for general values of the parameters p, v, E.
Following Kantorovich and Krylov [18], this integral equation is replaced by a finite system
of linear algebraic equations. We use values v = 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, p = 0.1, 0.2,
0.3, 0.4, 0.5, and E = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, for the parameters. Some results
are shown graphically on Figs. 2-7, where we plotted the variations of Tp and K with E.

On the other hand, when the ratio E is sufficiently small, an iterative solution of equation
(31) may be obtained as a convergent power series in . To derive this solution, expand the
kernel K(u, A) in powers of E to yield

K(u, A)= (m(, A)E
2 m + 2 + n, (46)

m=O

where n = 2(v -p),
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0.3 -----. ,,-------------------- --------- 
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Fig. 2. The values of T, for = 0.0.

K
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. . ..... 4 . -. a= -1.0
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-- - a = .0
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Fig. 3. The values of Kp for 3= 0.0

T
p

0.2 -

1.0

a= -n0.5
0.1 -- 0.0

a 1.0

0.05 a------- ----- t--- 2.0

a= 3.0
0 E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 4. Values of for = 0.2.

kmU, ~)=U[ TAp) T 2 [ p v (l -p)J + v) 2( 1+vm-p) (l -P),l + -)k 2k

(1 P)m-k( + V)m-kA2(-k)
x (1 + P)m-k(M - k)! (47(47)
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Fig. 5. The values of Kp for /3 = 0.2.
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Fig. 6. Values of Tp for a = 0.
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Fig. 7. Values of Kp for a = 0.

and (a)n denotes the shifted factorial defined as

(a)n = F(a + n)IF(a) .

The iterative solution is found and the three-terms expansions for the quantities Tp and Kp
are then computed:
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((pr + )2{ 2 + ( 2 +/2 ) ( p)(l )4+nTr(1 + 2) 2) 2 +n)(T) r (p)F( 2 +n/2) 2+n (2 + n/2) 2 (1 -p)( +)£

+( r(p)r(2 2) + V) 4+2n +o(eq) '
(48)

TF(l + ,) 3 4+ n

K) = (p)(2 + n/2) (2 + n/2)2

+ (p)r( 2 + n/2) ) I I

where n = 2(v -p) = a + 3 + 1 >-1 and q = min(6 + n, 6 + 2n, 6 + 3n).
The obtained results are in full agreement with those of the former method.

6. Conclusions

On the basis of our numerical calculations, we arrive at the following conclusions.
(i) The influence of clamping dies out with increasing a and l3.
(ii) For any values of 3 and for all non-negative values of a, the influence of constraint may
be neglected, since it induces relative variations in the torque and coefficient of concen-
tration less than 2% as long as e does not exceed 0.4. This also holds for negative values of
a, provided f3 is greater than 0.4.

Appendix

Following Erd6lyi et al. [17, form. 19.3 (1)], if x <r

L(x, )J(tr) 2( 21 -2pF(1 + )p) xr 2p-v-2

x 2F(1 -p, 1 + v -p; + 1; (x/r)2)).

Using Euler's integral representation of the hypergeometric function 2F,, one obtains

21
- 2 p

X I

L(x, r) r(p) 2 2+v-2 -p(1 t)-(1 _ tx2/r 2)p 1 dt. (A.1)

Substituting t = s 2 /x 2 in (A.1), we get

22-2p _ 1+ 2 -2p

L(x, r) {(p)} (xr)- s ds (A.2)

Substituting t = r2 1s2 in (A.1), we get

2 2-2p 0 S1-2v-2p

L(x, r) = {r(p) (xr s ds . (A.3)
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